Человеческий мозг - сложнейшая живая система, которая порой начинает давать сбои из-за переутомления, болезней, возрастных процессов. Поиск веществ, способных помочь мозгу в экстренных ситуациях, ведется фармакологами давно. Одной из важнейших удач было открытие гамма-аминомасляной кислоты, "главнокомандующего" тормозными процессами мозга.

В школе нас учат, что мозг и нервы работают исключительно с помощью электричества. В самом деле, нервные клетки отправляют свои «приказы» в виде электрических импульсов. Но волокна, по которым бегут эти импульсы, напрямую не соприкасаются с клетками, выполняющими «приказы». Между нервным окончанием и клеткой-исполнительницей лежит пространство, которое называется синаптическая щель. Место же контакта нервного волокна с клеткой получило наименование синапс. Механизмы передачи и движения нервного импульса до конца не изучены и являются темой для споров в научном обществе. Но что достоверно известно - ГАМК И её метаболит ГОМК являются одними из основных нейромедиаторов организма, а их изучение является перспективным при лечении болезней, связанных с нарушением функционирования мозга. Передача нервного импульса похожа на посылку телеграммы: сначала действует ток, бегущий по нервному волокну, потом готовится "письменное сообщение", которое передается через синаптическую щель с помощью химических веществ, и только потом клетка-исполнитель получает "приказ". Нас интересует среднее звено этого процесса - события в синапсе. В нервных окончаниях вырабатываются и выделяются особые химические вещества - передатчики нервных импульсов, или медиаторы. Они поступают в синаптическую щель. Их молекулы и являются носителями информации, передающими "приказ". расположены особые белки, которые захватывают плавающие в синаптической щели передатчики-медиаторы и затем запускают сложные физико-химические процессы в клетке. Результатом этого может быть множество самых разных реакций в организме. Но в основе всех функций, в том числе и сложной функции центральной нервной системы, лежит тонкое взаимодействие основных процессов нервной деятельности - возбуждения и торможения. Возбуждение - это состояние активности нервных клеток, когда они вырабатывают и отправляют по своим отросткам нервные импульсы, а торможение - состояние невосприимчивости к внешним раздражителям.

Первые, наиболее хорошо изученные передатчики нервного импульса - это ацетилхолин и адреналин (см. "Наука и жизнь" № 5, 1991 г.). Они работают, передавая "приказы" от мозга к мышцам, к железам, сердцу, сосудам. Оба медиатора могут обеспечивать как торможение, так и возбуждение. Например, ацетилхолин вызывает усиление сокращений мышц кишечника, но замедляет работу сердца. Адреналин вызывает спазмы сосудов, но расслабляет бронхи. В мозге одни нейроны или даже целые отделы мозга возбуждаются ацетилхолином и адреналином, другие - тормозятся.

Но эти медиаторы работают только в 10% нейронов мозга. А каким же образом обеспечивается снижение общей активности мозга, например сон? Это долго оставалось неясным. Однако ученые предполагали, что в мозге должны быть вещества, которые обеспечивали бы уменьшение активности нервной системы в целом. И такое универсальное вещество, вызывающее торможение, через некоторое время было обнаружено. Им оказалась гамма-аминомасляная кислота, которую в дальнейшем мы будем называть сокращенно - ГАМК.

1

Универсальный регулятор

Впервые гамма-аминомасляную кислоту обнаружили в мозге Е. Робертс и С. Френкель в 1950 году. Но ее главное свойство открыл в 1963 году английский ученый К. Крневич. Он изучал электрические потенциалы, которые возникают в соответствующих участках коры головного мозга при раздражении кожи, а также и любых других органов чувств. Исследователь подвел к нейрону, воспроизводящему такие электрические потенциалы, две микропипетки. Одну из них ввел в тело нейрона и через нее регистрировал возникновение электрического потенциала - возбуждение, а другую оставил снаружи и заполнил раствором ГАМК в ничтожной концентрации 10-14М. Когда аминокислота поступала из пипетки к нейрону, она полностью подавляла импульсы в чувствительных клетках коры головного мозга.

Чуть позднее японские исследователи подтвердили эти результаты. Опыты были воспроизведены и автором статьи. Стало ясно, что ГАМК может тормозить любые электрические потенциалы как в коре, так и в других участках мозга. Это вещество вырабатывается и выделяется именно в тех областях мозга, которые ответственны за торможение нервной активности. Считается, что ГАМК обеспечивает передачу тормозящих импульсов приблизительно в 30-50% синапсов клеток мозга.

В головной мозг кошки (рис. 1), находящейся под наркозом, вводят электрод, к которому прикладывают фильтровальную бумажку, смоченную раствором ГАМК. После раздражения нерва на передней лапе записывают вызванные потенциалы на экране осциллографа. Амплитуда потенциала отражает число возбужденных нейронов и их способность к восприятию внешнего импульса. При воздействии физиологическим раствором потенциалы не изменяются (график вверху), при поступлении раствора ГАМК постепенно происходит торможение нервных клеток (график внизу).

Аминокислота вырабатывается в цитоплазме нервной клетки, а с приходом импульса выделяется в синаптическую щель. Там специальные белки-рецепторы взаимодействуют с ГАМК таким образом, что в мембране клетки-исполнителя открываются поры (Рис.2). Через них внутрь клетки поступают ионы хлора, которые находятся в избытке в межклеточной жидкости. Проникновение хлора в клетку и вызывает в ней состояние торможения.

В покое в протоплазме клеток преобладают отрицательные заряды, а на поверхности мембраны скапливаются положительные - клетка находится в состоянии умеренной деполяризации и готова к возбуждению. При воздействии активирующего медиатора происходит выравнивание зарядов по обе стороны мембраны - деполяризация, что ведет к возбуждению клетки.

Тормозной импульс вызывает выработку синаптических пузырьков, которые выходят в синаптическую щель и выбрасывают ГАМК. Молекулы ГАМК соединяются с рецепторами, каналы в мембране открываются, и ионы хлора выходят в протоплазму, увеличивая отрицательный заряд внутри клетки и разность потенциалов на мембране. В результате обычное возбуждение клетки становится невозможным и возникает состояние торможения. Препарат пикротоксин препятствует этим процессам, воздействуя на каналы в мембране клетки-исполнителя.

Было показано, что торможение может происходить либо вследствие влияния посторонних раздражителей на текущую деятельность (внешнее, безусловное торможение), либо вследствие обучения (внутреннее торможение). Внутреннее торможение возникает в структурах головного мозга при повторении любых раздражителей без биологически значимого подкрепления и выражается в исчезновении периферических реакций (вегетативных, секреторных, двигательных: автоматических и произвольных), ориентировочных либо условнорефлекторных, исходно вызываемых этими раздражителями. Внутреннее торможение не тождественно утомлению. Оно имеет активную природу. В поведенческом плане природа внутреннего торможения как специфического нервного процесса проявляется в том, что в случае присоединения тормозного стимула к активирующему этот стимул снижает интенсивность условного рефлекса. Кроме того, заторможенные при повторении неподкрепляемого стимула реакции временно восстанавливаются при изменении условий опыта, в том числе при изменении интенсивности либо времени действия тормозного раздражителя. Открытие школой Павлова специфического тормозного процесса, возникающего в результате обучения, является не менее фундаментальным достижением нейрофизиологии, чем выявление механизмов и закономерностей образования новых активных форм поведения. Именно внутреннее торможение обеспечивает возможность тончайшего приспособления животных и человека к постоянно меняющимся условиям внешней среды. Оно определяет выбор наиболее адекватных форм поведения, затормаживая, ограничивая выход возбуждения на периферию, и не только на периферию, но и в сферу сознания, предотвращая тем самым осуществление бесчисленного множества реакций, не соответствующих данной ситуации, ненужных для текущего образа действий и мышления. Внутреннее торможение играет решающую роль в организации правильного социального поведения человека, в реализации самых разнообразных форм его деятельности, от элементарных бытовых навыков до высших форм творческой активности. Согласно представлению И.П.Павлова, научная деятельность человека заключается в поиске, отборе и закреплении гипотез, соответствующих действительности, и в отбрасывании, затормаживании неправильных, ошибочных умозаключений.

Но ее главное свойство открыл в 1963 году английский ученый К. Крневич. Он изучал электрические потенциалы, которые возникают в соответствующих участках коры головного мозга при раздражении кожи, а также и любых других органов чувств. Исследователь подвел к нейрону, воспроизводящему такие электрические потенциалы, две микропипетки. Одну из них ввел в тело нейрона и через нее регистрировал возникновение электрического потенциала - возбуждение, а другую оставил снаружи и заполнил раствором ГАМК в ничтожной концентрации 10-14М. Когда аминокислота поступала из пипетки к нейрону, она полностью подавляла импульсы в чувствительных клетках коры головного мозга.

Чуть позднее японские исследователи подтвердили эти результаты. Опыты были воспроизведены и автором статьи. Стало ясно, что ГАМК может тормозить любые электрические потенциалы как в коре, так и в других участках мозга. Это вещество вырабатывается и выделяется именно в тех областях мозга, которые ответственны за торможение нервной активности. Считается, что ГАМК обеспечивает передачу тормозящих импульсов приблизительно в 30-50% синапсов клеток мозга.

Аминокислота вырабатывается в цитоплазме нервной клетки, а с приходом импульса выделяется в синаптическую щель. Там специальные белки-рецепторы взаимодействуют с ГАМК таким образом, что в мембране клетки-исполнителя открываются поры. Через них внутрь клетки поступают ионы хлора, которые находятся в избытке в межклеточной жидкости. Проникновение хлора в клетку и вызывает в ней состояние торможения.

Рецепторы ГАМК расположены также и в сосудах, особенно много их в сосудах мозга. Ученые составили карты, на которых указано, в каких частях мозга ГАМК играет роль главного тормозного вещества. Хотя концентрация этой кислоты в разных отделах мозга различна, найти ее можно практически везде. Когда же подсчитали общее число ее молекул, то оказалось, что мозг содержит ГАМК в значительно больших количествах, чем это требуется для торможения его активности. Зачем? Ведь природа не терпит излишеств. Исследователи предположили, что ГАМК выполняет в мозге и какие-то иные функции. Действительно, вскоре было установлено, что она является обязательным участником многих процессов: влияет на транспорт и переработку глюкозы, на дыхание клеток, на образование в них запасов энергии, повышает устойчивость клеток (и мозга в целом) к кислородному голоданию, активизирует синтез белков. Эти функции нарушаются при некоторых психических и неврологических расстройствах, когда мозг испытывает нехватку аминокислоты.

Длительное существование порочного круга ведет к возникновению неврозов, психозов и депрессии, нарушению сна, памяти и мышления. Стрелки обозначают направление влияний одного состояния на другое и те звенья порочного круга, на которые воздействуют ноотропные средства

Начался поиск лекарств, способных воздействовать на передачу нервных импульсов. При этом ученые столкнулись с удивительным фактом: некоторые растения уже миллионы лет тому назад научились синтезировать вещества, которые успешно воспроизводили или столь же успешно блокировали действие передатчиков нервных импульсов медиаторов. Так, никотин и мускарин, содержащиеся в табаке и мухоморах, действуют так же, как ацетилхолин, а атропин, вырабатываемый красавкой (белладонной), устраняет его действие. Эфедрин из растения эфедра воспроизводит, а эрготоксин из маточных рожков спорыньи устраняет действие норадреналина.

Стали искать такие растительные вещества, которые могли бы влиять и на работу ГАМК в нервных клетках. Выяснилось, что некоторые алкалоиды «выключают» ГАМК. Эти вещества пытались использовать в качестве средств, активизирующих работу мозга, однако они слишком опасны, поскольку даже в очень малых дозах могут вызывать сильнейшие судороги. Не случайно в былые времена из этих растений готовили яды для стрел. Алкалоиды пикротоксин и бикукулин нашли другое применение: с их помощью исследователи установили, что система торможения, регулируемая ГАМК, противодействует столь же тотальной системе активации мозга, которая управляется другим медиатором - глютаминовой кислотой. Если тормозная система ГАМК блокирована или нарушена, то активация мозга становится слишком сильной, и возникают судороги. Небольшое же снижение работы тормозной системы при недостатке ГАМК в организме ведет к бессоннице, беспокойству, тревоге. Восстановление содержания этого вещества, напротив, обеспечивает нормализацию сна, успокоение.

    Смотрите также

    Структура сна
    Люди привыкли считать сон периодом спокойствия и бездействия. Однако во время сна в мозгу и во всем организме протекает множество активных процессов, в частности вырабатываются гормон роста и полово ...

    Гипотензивные средства для приема внутрь
    Их успешно используют для лечения гипертонических кризов в случаях, когда необходимо умеренно быстрое, на не экстренное снижение АД, особенно в амбулаторных условиях и чаще - при неосложненном гипе ...

    Нарушения мышления
    Нарушения мышления являются одним из наиболее часто встречающихся симптомов при психических заболеваниях. Клинические варианты расстройств мышления чрезвычайно многообразны. Некоторые из ни ...